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Attorney Docket No. 82580

NONRESONANT TECHNIQUE FOR ESTIMATION OF THE MECHANICAL

PROPERTIES OF VISCOELASTIC MATERIALS

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used
by or for the Government of the United States of America for
governmental purposes without the payment of any royalties

thereon or therefore.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates tc & method for measuring
mechanical characteristics of visccelastic materials. Mors
particularly, this invention provicdes a method for measuring
complex Young’s modulus, complex shear modulus, and complex
Poisson’s ratio of a wviscoelastic material formed as a rod.
(2) Description of the Prior Art

Measuring Young’s modulus and shear modulus of materiais is
important because these parameters significantly contribute =c
the static and dynamic response of a structure. Resonant
Cechniques have been used to identify and measure these modul:
for many years. These resonant methods are based on comparing

the measured eigenvalues of a structure to predicted eigenvz_ues
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from a model of the same structure. The model of the structure
must have well-defined (typically closed form) eigenvalues for
this method to work. Additionally, resonant techniques onlv
allow measurements at natural frequencies.

Comparison of analytical mecdels to measured frequency
response functions 1is another method used to estimate stiffness
and loss parameters of a structure. When the analytical model
agrees with one or more frequency response functions, the
parameters used to calculate the analytical mecdel are considered
accurate. If the analytical model is formulated using a
numerical method, a comparison of the model to the data can re
diZficult due to dispersion properties of the materials.

Metnods also exist for measuring Young’s modulus that
reguire strain gages Tc be affixed to the rod. The mounting cf

rain cages normally requires that the gage be glued to the

specimer, which locally stiffens the material. For soft
viscoelastic materials, this can have an adverse impact on zhe
estimate of the loss and stiffness. Another method for measuring

stiffnes

n

and loss is by deforming the material and measuring the
resistance to indentation. This method can physically damage the
specimen 1if the deformation causes plastic deformation.

Pricor art methods do not provide closed form, non-resonzant

ot

O

<

hniques for measuring complex Young’s modulus and complex

h

o

o

ar mcdulus of a rcd that contains a mass on the end when =-he

end mass changes the dynamic response of the system. This system
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typically arises when an end accelerometer is attached to a rod
to measure the rod’s response. Frequently, the mass is large

enough that it significantly changes the response of the rod.

SUMMARY OF THE INVENTION

It is a general purpose and object of the present invention
to provide a method that measures the material properties of a
viscoelastic material.

Yet another purpose of this invention is to provide a method
for measuring the complex Young's modulus, complex shear modulus,
and complex Poisson's ratio of a viscoelastic material.

Still ancther reguirement is that the invention must prcvide
a methoc Zor measuring the complex Young's modulus and comp_ex

snhear mcculus of a mat

¢

rial at a Zreqguency other than the
resonant frequency cI the system.

Accordingly, a method for estimating the rsal and imagirnary
Poisson's ratio of & specimen at an excitation frequency is
provided. The specimen is first joined to a reciprocating tsst
apparatus at cne end with a mass rositioned at the other end.
The test apparatus reciprocates at the excitation frequency znd
accelerations are recorded at each end cof the specimen. The
Young's modulus is calculated by mathematical manipulation of the
recorded acceleraticns. The specimen is then joined to a
reciprocating rotaticnal test apparatus at one end with an

rotational inertia pcoszitioned at the other end. Acceleraticns
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are recorded upon subjecting the specimen to rotational
reciprocations at the excitation .frequency. The shear modulus is
calculated from mathematical manipulations of these
accelerations. Poisson's ratio can be calculated from the

Young's modulus and the shear modulus at the excitation

- frequency. All of the calculations may be performed giving both

real and imaginary values.

BRIEF DESCRIPTICN OF THE DRAWINGS

O
H

A more complete understanding cf the invention and manv
the attendant advantages thereto will be readilv appreciated as
The same becomes better understocd ty reference tc the following
cstailed description when considersd in conjunction with the
accompanying drawings wherein:

FIG. 1 shows apcaratus for measurement of 7oung’s modulus
according to the current inventicn;

FIG. 2 is a plot of the transfer functions T(®) and T,(®)
versus frequency;

FIG. 3 is a plot of the function s versus frequency;

FIG. 4 is a plot of real and imaginary Young's modulus

vzlues versus frequency.

FIG. 5 shows the apparatus required for measurement of the

shear mcdulus of the test specimen;
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FIG. 6 1s a plot of the transfer functions §(®) and S,(o)

versus frequency;

FIG. 7 is a plet of the function r versus frequency;

FIG. 8 is a plot of real and imaginary shear modulus values
versus frequency; and

FIG. 9 is a plot of the estimated and actual values of
Poisson’s ratio versus frequency for a simulation with no noise.

DESCRIPTION OF THE PREFERRED EMBODIMENT

£IG. 1 shows apraratus for measurement of Young’s modulus

according to the current inventicn. One end of the test specimen

rcd 10 is mounted tc = mechanical shaker 12 and the other end of

trne rod 10 is mounted to a mass 14.
w.Zh & second mass nz7ing a
s attached to the

table 1¢ which is

tc shaker 12. A seczcnd accelerometer 20 is

-

he measurement axis of both accelerometers

direction indicated zy arrow 22. Shaker 12
red 10 in the form of

ccmpressional wave.

Shaker 12 has &

mounting of iZnstrumentaticn. Mass 14

shaker table
is Interchangezclie’
r 18

An accesleromet

(]
[t

mechanically jcined
attached tc mass 14.
18 and 20 is in the x

inputs energy into

linear translation which initiates a

The speed and loss cf this wave can be

measured using the twc accelerometers 18 and 20, and Young’s

mcdulus can be calculzted from the result.

process 1s described zelow.

This measurement

The system model represents rod 10 attached to shaker table

12 at z =

4 at x = L.

0 and mass This mass 14 includes
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_accelerometer 20 to measure the acceleration levels at the end of

rod 10. The linear second order wave equation modeling

displacement in the rod 10 is

O'u(x,1) E du(x.t)
ot’ pox

0, (L)

where u(x,f)is the particle displacement at location x in meters

and time t in seconds, p is the density of the rod (kg/m’), and E
is the frequency dependent, complex Young’s modulus of elasticity

2 . . . » . .
(N/m”) which is unkncwn and is to be determined using this
method. The boundary at x = 0 is modeled as a fixed end with

harmonic motion and is expressed és

u(0,r) =U, exp(iot) , z

where @ is the frequency of excitation (rad/s), U, is the

amplitude (m), and i1 is the square root of -1. The boundary zt x
= L is formulated by matching the force at the end of the rcd 10

tc the force caused by mass 14 and is expressed as

~2
AE 6u€L,t) e o uﬁ(f,t)
ox ot

1] (J/

N
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where A is the cross-sectional area (m°) of the rod 10 and m is
the mass (kg) of mass 14 at the end of the rod 10.

Equation (1) can be rewritten in the spatial domain as
d—%@w;mx,m):o , (4)

where U(x,w) is the temporal Fourier transform of the axial

displacement and &; is the complex compressional wavenumber

(rad/m) and is equal to

[@]]

Similarly, ecuation (2) becomes

U0,)=U, , (5)

and equation (3) becocmes

dU(L,w) _

AE mo*U(L, @) . (7

The solution to equation (4) is

Ulx,0) = R(w)cos(k,.x) + S(o)sin(k,x) , %
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"where g is the ratio of the mass of the mass 14 to the rod

where R and S are wave propagation constants. Applying boundary

conditions (6) and (7) to equation (8), and writing the solution

as a transfer function in the form of a ratio between the

displacement at both ends, produces

el

U(L,w) 1 |
U, | cos(kL)—u(k,L)sin(k.L)| ' ‘

()

}—)

mass and is equal to

)
N

where M is the mass ¢f the rod (kg) expressed as

M =pAL . (1)
The transfer function in equation (%) repressents data and is
& function of unknown wavenumber k.. The inversion of two cf

these transfer functions using different attached masses will

allow the experimental data to be combined and yield a closed

form solution of £,

and then E as a function c¢cf @. The

theoretical form of these transfer functions is

U(L,w) L .
=T ()= , (=75
UO |( ) { Z)

cos(k,L) -, (kL) sin(k,L)
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and

A0 7, ()= [ : ; } , (13)
U, cos(kyL) =, (keLysin(k L)

where the subscript 1 denotes the first attached mass and the
subscript 2 denotes the second attached mass. Writing equations
(12) and (13) as a function of (k;L)sin(k;L) and then equating them

yields

Ty, -1 -
cos(kEL)—————“—“‘=¢ , (14)
LT (n, —py)
where ¢ 1s a complex quantity. The inversion cf equation (14;

adl_ows the complex wavenumber tc fe solved as a functicn of ¢.

This scluticn to the resal part of k; is

1 nrx
—Arccos(s)+—, n even
2L 2L
Re(k,) = , (15

J—Arcam&s)+££,nodd
2L 2L

where

=[Re(@)]" +[Im(®)] ~ {Re(@)] +[Im@)F ] - PRe(@)} ~2Am@)F -1} ,  (15)
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2 1s a non-negative integer and the capital A denotes the
principal value of the inverse cosine function. The value of n
is determined from the function s, which is a cosine function

with respect to frequency. At zero frequency, n is 0. Every
time s cycles through 7 radians (180 degrees), n 1s increased by
1. When the solution to the real part of k, is found, the

solution to the imaginary part of k. is then written as

Re(¢)  Im(¢) }

1
m(kg) = L oe. { cos[Re(k;)L] sin[Re(k,)L]

pe’

E(w) =Re[E(w)] +iIm[E(w)] = [Re(k, ) +iIm(k, )}’

Equations (12) - (1€) produce an estimate Young’s modulus at
every frequency in which a measurement is conducted.
Numerical simulations have been conducted tc determine the

effectiveness of this method. A baseline problem is defined with

M=4.0 kg, m = 0.4 kg, my = 1.2 kg, L = 0.254 m, p = 1200

kg/m’, Rel(E)

]

10" +10° f N/m?, and Im(E) = 107+10°f N/m? where f

10
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ils frequency in Hertz. Using these values, the mass ratios p,
and p, are computed to be 0.1 and 0.3, respectively. FIG. 2 is

a plot of the transfer fuhctions I[(w) and T,(w) versus frequencv
and corregponds to equations (12) and (13). The top plot is the
magnitude and the bottom plot is the phase angle. The first
transfer function was computed using an attached mass of 0.4 kg
and is depicted with x’s and the second transfer function was
computed using an attached mass of 1.2 kg and is shown with o’s.
FIG. 3 is a plot of the function s versus frequency and
corresponds to equation (16). Note that although this function
is a cosine with respect to frequency, the pericd is increasing
as frequency increases. Once the values ¢f n are known, the

modulus values of E can be determined using equations (15) -

[
(0

(1z).
FIG. 4 is a plot cf real and imaginzry Yourng's modulus
values versus frequency. The real (actual) values used to make

the transfer functions are displayed as z solid line and the rezl

(estimated) values ar

(Y

displayed as x's. The imaginary
(estimated) values are displayed as o's. The estimated values
agree at all frequency values with the actual values. This is
ezpected because there is no noise in the date and all the
parameters used to make the transfer functions are used to
calculate the modulus values. No error is introcduced when

calculating the modulus from the transfer functions.

11
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FIG. 5 shows the apparatus required for measurement of the
shear modulus of the test specimen. A shaker 28 having a shaker
table 30 is longitudinally connected to a stiff connecting rod 32
that is connected to the edge of a large disc 34. Large disc 34
is mounted using a middle mounted pivot member 36 so that disc 34
is free to rotate about its center point. As shown pivot member
36 suspends disc 34 from a fixed structure 38. A test specimen
40 is rigidly attached to the middle of this disc 34 in a manner
so that when disc 34 is pushed by connecting rod 32, it initiates
torsional (or rotational) response in test specimen 40. The
other end of test specimen 40 is attached to a second disc 42
which acts as rotary inertia when the test is run. Later in this
measurement technique, this second disc 42 will be changed :zc

ancthner second disc naving a different rotary Znerti

o
<
a
}_J
[
m
[€)]
O

that twc sets of experimental measurements can Se recorded. Twe

ccelerometers are used. A first accelerometer 44 is attached to

[+}]
()

the edge of first disc 34, and a second accelerscmeter 46 is
attached to the edge of second disc 42. The measurement axis of
both accelercmeters 44 and 46 is in the angular direction of the
discs 34 and 42. Although both accelerometers measure
translation, these values can be converted intc angular rotaticn
by multiplying the recorded value by the distance from the center
cf the disc to the accelerometer for each accelerometer.

In use, shaker 2% inputs energy via shaker table 30 inzo

connecting rod 32 in the form of linear translation. This rod 22




Il inputs the energy into first disc 34 which makes the disc rotate

9

and initiates a shear wave in the test specimen 40. The speed

and loss of this wave can be calculated using measured data from

(FS)

4 the two accelerometers 44 and 46, and the shear modulus can be

5 calculated from the result. This measurement (estimation)

6 process is extremely similar to the measurement of Young’s

7 modulus and is described below.

8 The system model represents a cvlindrical rod attached to a
9 torsional shaker at x = 0 and a disc with fotary inertia at x =
100 Z. This disc includes an accelercmeter to measure the angular
11 zcceleration levels at the end of the disc. The linear second

12 order wave equation modeling angular rotation in the specimen 40

13 s

14

15 COxt) _GoBD (15
ot” p ox

16

17 where 6(x,t) is the angular rotatiocn at location x in meters and
18 time t in seconds, p is the density (kghﬁ) of the specimen, and
19 G is the frequency dependent, complex shear modulus of elasticity

20 (N/m?) which is unknown and is tc be determined using this
21 method. The boundary at x = 0 is mcdeled as a fixed end with
22  harmonic angular motion and is expressed as

23

24 0(0,t) = ©®, exp(iot) , (29,
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where @ is the frequency of excitation (rad/s), ®, is the

amplitude (rad), and i 1s the square root of -1. The boundarv at
x = L is formulated by matching the angular force (torque) at the
end of the specimen 40 to the rotary inertia of the second disc

42 and is expressed as

GI, aegL,t) g 5‘9(1},t) , (21)
Ox ot

where /[, is the polar moment of inertia of the cross-section of

the specimen (m‘) and J is the rotary inertia of the disc at the

. ~ 2 . s
end of the bar (kgm”). For a cylindriczl rod, the polar moment
cf inerziz is
T ~n
[p=5a4 (22,
where a is the radius of the specimen in meters (m). For a

cylindrical disc, the rotary inertia is

J==—mr? . (

N
)

where r iz the radius of the disc in meters(m), and m is the mass

cf the dizc (kg).
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Equation (19) can be rewritten in the spatial domain as

d 0(x, )

3 +ké®£nm)=0 , (24)
where O(x.w) 1s the temporal Fourier transform of the axial

displacement and k; is the complex shear wavenumber (rad/m) and

is equal to

k,=w/\G/p . (258)
Similerlv, ecuation (20) becomes

00.0)=0, , (2%
and eguation (21) becomes

GIPM=Jm2®(L,w) . » (27,

The sclution to equation (24) is

O(x,w) = X(w)cos(k,;x) + Z(w)sin(k,x) , (

Ny
QO

where X and Z are wave propagation constants. Applying boundary

conditiorz (24) and (27) to equation (2%2), and writing the




1 solution as a transfer function in the form of a ratio between

2 the rotation at both ends, produces
3
1 .
4 L) _ , l ' (29)
o, cos(ksL) —MkgL)sin(k; L) |
5

6 where A is equal to

0]
.
il
to
~
(8]
(@]

10 where M is the mass of the specimen expressed as

11

12 M = pAL . 121

13

14 - The transfer function in equation (29) represents data and
15 is z function of unknown wavenumber k.. The inversion of twc of

16 these transfer functions using diffsrent attached rotary inertial
17 masses will allow the experimental datz to be combined and yield
18 a closed form soluticn of k; and then G as a function of w. The

19 theoretical form of these transfer functions is

O,

cos(kgL) =\, (k;L)sin(k;L)

) O(L,w) :Sl(m){ 1 } , 2
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O(L,w)
60

1
cos(kyL) =X, (k;L)sin(k,L)

[99]
[99]

=S2(m)={ ’ (

where the subscript 1 denotes the first attached rotary inertial
mass and the subscript 2 denotes the second attached rotary

inertial mass. Writing equations (32) and (33) as a function of

(kzL)sin(k;L) and then equating them yields

Sk, =SA
cos(hsl) =———" "1 =¢ , (34)
S8, (A, —4y)
where ¢ Is a complex guantity. The inversion of equation (34}

allows the complex wavenumber to be solved as a function of ¢.

This soluticn to the

[

gzl part of k; is

1 mrmr
—Arccos(r)+—, m even
2L 2L

Re(k,) = , (

(a)

[@))

-J—Arccoﬂ—ry+zzz,nzodd
2L 2L

where

r=[Re(o)} +[Im(g)}: ~{Re(@)F +(Im(@) | - 2Re(@)} ~AIm(@F -1} ,

M

(¥8]

m is a ncn-negative integer and the capital A denotes the

principal value of the inverse cosine function. The value of m

17
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is determined from the function r, which is a cosine function

with respect to frequency. At zero frequency, m is 0. Every

time s cycles through 7 radians (180 degrees), m is increased by
1. When the solution to the real part of k; is found, the

solution to the imaginary part of k; is then written as

Re(p)  Im(o) }

1
tmiks) = zloge{cos[Re(kG )L] sin[Re(k,)L]

Once the real and imaginary parts of wavenumber k; are known,

the complex valued modulus of elasticity can be determined at

eacn Irecuency with

2

pw”

=Re[G(w)]+ilm =
G((D) Re[ (OJ)] 1 [G((D)] [Re(k6)+11m(kg)]2

(e8]

(€8]

Zguations (19) - (38) produce an estimate shezr modulus at every
frequency in which & measurement iz conducted.

Numerical simulations are conducted to determine the
effectiveness of this method. The baseline problem is also used
in this section. One additional parameter needed is the radius
cf the rotary inertial.masses which 1s chocsen to be 0.1016 m.
Using the previous mass values the rotary inertia values of the

na

O]

ses are J, = 0.0021 kgm’ and J, = 0.0062 kgm?. Using these
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values, the ratios A, and A, are computed to be 0.247 and 0.741,
respectively. The shear modulus values used for the analysis are
Re(G) = 3.58x107 +3.43x10*f N/m*, and Im(E) = 2.55x10°+2.34x10°f
N/m* where f is frequency in Hertz. FIG. 6 is a plot of the
transfer functions S§,(0) and S,(®w) versus frequency and
corresponds to equations (32) and (33). The top plot is the
magnitude and the bottom plot is the phase angle. The first
transfer function was computed using an attached mass of 0.4 kg
and 1s depicted with x’'s and the second transfer function was
computed using an attached mass of 1.2 kg and is shown with o’s.

FIG. 7 is a plot of the function r versus frequency and

@]
B

responds to equation (36). Note that although this functicn

-

of

~A 1
cZd 1s

()]
|+

3

S 2 ccgsine with rescect ¢ fraguency, ve

2s freguency increases. Values of m versus freguencv can be

Cetermined from the function r. Once the values of m are known,

the modulus values of G can be determined using eguations (19) -

{
\

(s}

8). FIG. 8 is a plot of real and imaginary shear modulus
values versus frequency. The real (actual) values used to make
the transfer functions are displayed as a solid line and the real
festimated) values are displayed as x’s. The imaginary (actual)
7alues used to make the transfer functions are also displayed as

@ solid line and the imaginary (estimated) values are displayed

2s o’s. The estimated values agree at all freguency values with

the actual values. Thi

wm

is expected because there is no noise in
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the data and all the parameters used to make the transfer
functions are used to calculate the modulus values, i.e., no
error is introduced when calculating the modulus from the
transfer functions.

The estimation of Poisson’s ratic is achieved by combining

Young’s modulus and shear modulus that were previously measured.

This equation is

C
Il
|
|

—

~

()

o

where v is Poisson’s ratioc and is dimensionless. The formulztion

this method allows for Poisson’s

™
o)
ct

ratic to be & complex number,

2LTnCUCI TYLELZa__S Tos numper Ls very

iméginary cerT 2I Iois
FIG. & is a plot ¢ the estimated and actual
ratio versus ZIrequency for & simulation with

no noise.

n

The estimated values of the real part of Poisson’
ratio are depicted with x’s and the actual values of the rezl
part of Poisson’s ratio are shown as a solid line. The estimated
values of the imaginary part of Pcisson’s ratio are depicted with

¢’s and the actual values of the imaginary part of Poisson’s

ratio are shown as a solid line.

\Y]
ps

The estimated values agree
zll frequency values with the actual values. This is expected
because there is no noise in the data and all the parameters used

7o make =he transfer functions are used tc calculate the modu_:

20
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values, 1.e., no error 1is introduced when calculating the moduli
from the transfer functions.

The major advantage of this new method is that it measures
Young’s and shear moduli at every frequency that a transfer
function measurement is made. It does not depend on system
resonances or curve fitting to transfer functions. The
calculation from transfer function measurement to calculaticn of
moduli is exact, i.e., no error is introduced during this
process. Additionally, numerical simulations show that this
method i1s extremely immune to noise introduced during the
transfer function measurement. The new feature ntroduced 1o

this invention is the method tc mezsurs Young’s znd shear mcduld

cralyzer and then passed to & comcuter where the above

ca.culations are pericrmed. Once Young’s modulus and shear
mccdulus are determined, Poisson’s ratio can be czlculated.

ToTiL

Obviously many modifications and variaticrs ¢f the presernt

inventicn may become apparent in light of the abocve teachings.

In light of the above, it is ther=fore understccd that

)]

i the invention may be practiced

ctherwise than as specifically described.
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Attorney Docket No. 82580

NONRESONANT TECHNiQUE FOR ESTIMATION OF THE MECHANICAL

PROPERTIES OF VISCOELASTIC MATERIALS

ABSTRACT OF DISCLOSURE

A method for estimating the real and imaginary Young's
modulus, shear modulus and Pdisson's ratio of z specimen at zan
excitation frequency. The specimen is first joined to a
reciprocating test apparatus at cne end with a mass positioned at
the other end. The test apparatus reéiprocates at the excitzation

Irequency and accelerations are recorded at each end of the

specimen. The Young's modulus is calculated from the recorded

accelerations. The specimen is then joined to z reciprocating
rotational test apparatus at one end with a2 rotaztional iner-:izl
mass positioned at the other end. Accelerations are recorded

upon subjecting the specimen to rctational reciprocations at the
excitation frequency. The shear mcdulus is calculated from =zhese
accelerations. Polsson's ration can be calculatzed from the
Young's modulus and the shear modulus at the excitation

frequency. All of the calculations may be performed giving Loth

real and imaginary values.
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